ja z początkiem chodzenia do szkoły podstawowej miałem problemy z nauką matematyki w końcu w gimnazjum zaczął uczyć mnie nauczyciel który umiał przekazać wiedzę podawał na przykładach życiowych jak na czekoladzie zamiast pisać X rysował kiełbase a Y był kwiatkiem i znalazłem sposób żeby opanować materiał z matmy potrzebowałem 2 lub 3 przykłady z zadanie nie
Problemy z matematyką . Choć często powtarza się, że matematyka jest królową nauk, to właśnie z tym przedmiotem dzieci miewają największe problemy. Wynikać może to z indywidualnych predyspozycji, braku chęci lub złych metod nauczania. Doskonałym na to przykładem są problemy z tabliczką mnożenia.
Najnowsze badania donoszą, że dzieci, które były w ten sposób prześladowane przez rówieśników (z ang. bulliyng) mogą mieć problemy ze zdrowiem psychicznym jako dorośli. Według danych z USA dzieje się to 4 razy częściej niż w przypadku dzieci maltretowanych, poddawanych przemocy w domu (ale nie upokarzanych przez kolegów).
Czytając te bzdury mam wrażenie, że coś się dzieje z moją głową. Można to porównać do sytuacji pokazanej w pewnym opowiadaniu Ursuli K. Le Guin. Alternatywny świat, cyfry indyjskie (błędnie zwane u nas arabskimi) są nieznane, używa się 'tabliczek dodawania' obok tabliczki mnożenia, no i ogólnie regres.
W procesie dydaktycznym jest bardzo ważne, by uczniowie osiągali pozytywne rezultaty w uczeniu się matematyki już w młodszych klasach. Zgodnie z programem uczniowie klas I - III poznają podstawowe pojęcia matematyczne, które tworzą podwaliny do dalszego kształcenia matematycznego na szczeblu wyższym.
pada abad keberapa teknik sulam terkenal di indonesia. Witaj, niestety nie możesz jeszcze zagrać w tę grę na swoim urządzeniu mobilnym. Idź do jednego komputer lub wybierz jeden inny wielki Gra z dołu Podobne gry Najlepsze gry Popularne gry Zadania z matematyki Matematyka wyścigów rowerowych Dowiedz się matematyki online Kwiatowa dziewczynka Baby Hazel Sprzątanie z Peterem Problemy skórne Baby Hazel Znajdź pandę Baby Hazel Halloween Castle Game Math Tasks to darmowa internetowa gra flash z kategorii Gry edukacyjne. Możesz zagrać w tę bezpłatną grę online w przeglądarce bez rejestracji lub pobierania. Baw się dobrze ze melisa powiedział: problemy matematyczne 4. klasy Wysłany 9. | | Czerwca | 2010 | o 20:40 Nils powiedział: poddać się w pełni Wysłany 10. | | Czerwca | 2010 | o 11:59 Flo Rida powiedział: Klasa 3mahte jest pełna Wysłany 25. | | Maj | 2012 | o 17:14 Jessica powiedział: jest fajny, ale nudny Wysłany 25. | | Maj | 2012 | o 20:55 Pit moczyć powiedział: Wysłany na 1. | | Czerwca | 2012 | o 17:18 XD powiedział: Wysłany na 1. | | Czerwca | 2012 | o 17:24 Melanie powiedziała: powiedział: Matematyka jest głupia Wysłany 6. | | Czerwca | 2012 | o 16:09 lol powiedział: matematyka jest nudna. Mam lepsze rzeczy do roboty niż matematyka. Wysłany 6. | | Czerwca | 2012 | o 16:12 loli powiedział: wszyscy jesteście dof, musimy nauczyć się matematyki Wysłany 24. | | Październik | 2012 | o 9:03 Alisa powiedział: wielki Wysłany 20. | | Listopad | 2012 | o 19:04 Edwin powiedział: po prostu 2. klasa Wysłany 23 | | Listopad | 2012 | o 21:48 Inna powiedział: matematyka jest pełna coll Wysłany 12. | | Grudzień | 2012 | o 19:08 Pit moczyć powiedział: matematyka jest całkowicie fajna Wysłany 12. | | Grudzień | 2012 | o 19:09 Michael powiedział: szaleństwo Wysłany 19. | | Styczeń | 2013 | o 17:57 Michael powiedział: naprawdę bardzo Wysłany 19. | | Styczeń | 2013 | o 17:58 LOL powiedział: łatwa rzecz, ey Wysłany 8 | Kwietnia | 2013 | o 17:38 eni powiedział: yeh ily mahte Wysłany 7. | | Listopad | 2013 | o 19:57 Pan Z powiedział: kolega jest najlepszy Wysłany 28. | | Luty | 2014 | o 17:25 Iris Gleichen powiedział: Wysłany 28. | | Luty | 2014 | o 17:26 Powiedział Erick powiedział: Klasa 5 to skarga, bo to bzduraSmilley jest za pozostałe komentarze Wysłany 26. | | Marzec | 2014 | o 07:51 Elias powiedział: : Wysłany 26. | | Lipiec | 2014 | o 13:29 nie mam pojęcia powiedział: Czego ode mnie chcesz? Wysłany 19. | | Listopad | 2016 | o 13:50 Lina powiedział: Fajna gra Wysłany 12. | | Grudzień | 2016 | o 18:08 po kaka powiedział: gra jest blod Wysłany 12. | | Grudzień | 2016 | o 21:02 Ann Tenne powiedział: Wysłany 22. | | Grudzień | 2019 | o 11:24 Paul Paul powiedział: Wysłany 22. | | Grudzień | 2019 | o 11:26 Paul Paul powiedział: Wysłany 22. | | Grudzień | 2019 | o 11:27 POKREWNE POZYCJE Kto będzie milionerem? Witaj, niestety nie możesz jeszcze zagrać w tę grę na swoim urządzeniu mobilnym. Wejdź na komputer lub znajdź stąd inną świetną grę… Zadania na polowanie na śmieciarza na przyjęcie urodzinowe – 10 x inspiracja Różnorodne i dostosowane do wieku zadania polowania na śmieciarza na urodziny dziecka dosłownie stają się rzeczywistością dzięki tym pomysłom i szablonom… Aplikacja dla dzieci w wieku 3-5 lat w App Store Gry dla dzieci od 2 do 4 lat Clapenjoy SRL 1 089 ocen Darmowe zakupy w aplikacji możliwe Zrzuty ekranu Opis Gry edukacyjne dla dzieci do nauki… Spielbaum – gry online, graj za darmo, znajdź i graj we wszystkie gry na spielbaum Gry samochodowe są bardzo popularne wśród chłopców, a większość gier to takie gry wyścigowe. Postawiliśmy sobie za cel takie darmowe gry wyścigowe…
Często słyszymy, że dziecko, czy dorosły uczeń ma problemy z matematyką. Jak temu zaradzić ? Wystarczy od najmłodszych lat uczyć dziecko logicznego i kreatywnego myślenia, porównywania i wnioskowania, aby przekonać go, że matematyka nie musi być zmorą wszechczasów. Na rynku księgarskim jest dużo pozycji, dzięki którym możemy pokazać dzieciom, że matematyka potrafi być przyjemną i ciekawą zabawą. Jedną z takich propozycji jest książka Iwony Śliwerskiej pt. '' Zabawy z matematyką w klasie I''. Autorka zamieściła w niej różnorodne ćwiczenia pomagające dzieciom przyswoić zagadnienia matematyczne. Są wśród nich zagadnienia o tematyce z życia codziennego: odczytywanie czasu, temperatury, ważenie. Można przy tej okazji wykonać z dzieckiem tarczę zegarową z tektury i poszerzyć zabawę o aspekt praktyczny. W ten sposób w zabawę matematyczną mogą się włączyć rodzice, starsze rodzeństwo czy dziadkowie. Myślę, że nie bez powodu autorka zatytułowała książkę ''Zabawy z matematyką...''. Książka ma format A- 4. Jest przejrzysta i na pewno spodoba się dzieciom.
Problem dyskalkulii, w odróżnieniu od dysleksji jest stosunkowo mało uświadomiony i zbadany, pomimo tego, że trudności w matematyce wcale nie są rzadkie wśród uczniów każdego typu szkół. Dysleksja rozwojowa jest strukturalnym zaburzeniem zdolności matematycznych które mają specyficzny charakter tzw. wycinkowy, bez ograniczenia ogólnych zdolności poznawczych. Trudności te spowodowane są przez dysfunkcję pewnych obszarów mózgu. Dyskalkulia jest przejawem specyficznych trudności w uczeniu się matematyki a nie przejawem ogólnych trudności. Dziecko z trudnościami ogólnymi przejawia kłopoty mniej więcej na tym samym poziomie, potrzebuje więcej czasu na naukę. W testach inteligencji ma wyniki poniżej średniej. Trudności w nauce nie podlegają gwałtownym zmianom, są równomierne a w przypadku specyficznych trudności w uczeniu się podlegają wahaniom, czasami bardzo wyraźnym, uczeń potrafi być błyskotliwy a za chwile liczyć na palcach w celu wykonania prostego działania matematycznego. Uczeń taki charakteryzuje przeciętnym a często ponadprzeciętnym lub wysokim poziomem intelektualnym, równocześnie ma jednak trudności z pewnymi procesami myślowymi ( z procesami poznawczymi). Bardzo jasną i konkretną definicją jest zaproponowana w 2001r. przez brytyjski Department for Education and Skills określającą dyskalkulię jako: „Stan, który dotyka zdolności nabywania umiejętności arytmetycznych. Dyskalkuliczni uczniowie mają trudność z rozumieniem zwykłego pojęcia liczby, brakuje im naturalnego chwytania liczb, mają problemy z uczeniem się faktów liczbowych i procedur. Nawet jeśli wypracują poprawną odpowiedź lub zastosują właściwą metodę, to mogą to robić mechanicznie i bez pewności.” Uczeń z dyskalkulią:• Często wyobraża sobie liczby jako mgliste zbiorowości jedynek• Ma duże trudności z rozpoznaniem jakiejkolwiek struktury wewnętrznej w liczbach • Nie pamięta w jaki sposób liczby są zapisywane • Z trudem czyta liczby wielocyfrowe• Nie rozumie struktury dziesiętnej systemu liczbowego • Przejawia trudności z określeniem miejsca dziesiętnego liczby • Czytanie liczb wielocyfrowych sprawia im trudność• Czuje lęk przed matematyką • Wykonywanie działań nawet prostych wymaga bardzo wiele wysiłku• Często ponosi porażkę pomimo dużych chęci • W konsekwencji traci motywacje do nauki matematyki, czuje nie gorszy od innych uczniów, traci wiarę w swoje możliwości Oczywiście występowanie u dziecka /ucznia tych trudności, nawet kilku lub większości nie oznacza automatycznie, że dziecko ma dyskalkulie ale należy skierować swoje kroki do poradni psychologiczno - pedagogicznej w celu umówienia się na diagnozę, która będzie wnikliwymi wieloetapowym badaniem. Trudności związane z dyskalkulia rozwojową przejawiają się nie tylko w trudnościach ściśle związanych z dziedzina nauki jaką jest matematyka często są one połączone i bardzo silnie związane z:• Trudnościami z czytaniem i rozumieniem: - Dziecko ma trudność ze zrozumieniem języka matematycznego nawet jeśli bardzo dobrze czyta - Przy zadaniach bardzo długich, zapomina przed skończeniem czytania co było na początku - Pomyłki następują podczas odczytywania liczb podanie wyglądających np 3 i 8 oraz 6 i 9- Pomija przestrzenie pomiędzy liczbami 5 24 odczytuje jako 524- Trudność sprawia czytanie liczb wielocyfrowych np 45007, 1008, 8032- Ma trudność w rozpoznawaniu i stosowaniu odpowiednich symboli ( dodawania, odejmowania, mnożenia oraz dzielenia)- Ma problem z odczytywaniem map, danych z wykresów i tabeli• Trudności z pisaniem:- Błędnie kopiuje np. z tablicy liczby, figury geometryczne - Pisze symbole, liczby często zamieniając je i odwracając kolejność- Nie potrafi napisać z pamięci liczb, obliczeń czy figur geometrycznych - Ma trudność z poprawym zapisaniem liczby zawierającej więcej niż jedną cyfrę ( np zgubi zero pisząc dwa tysiące osiem jako 208, piętnaście zapisze jako 51)• Problem z rozumowaniem pojęć i symboli: - Trudność z rozumieniem symboli matematycznych - Problem z oceną miejsca dziesiętnego liczby - Problem z odczytywaniem danych z układu współrzędnych - Trudności z zapamiętaniem wzorów potrzebnych do obliczenia np. pola figury - Problem z rozumieniem pojęć związanych z wagą, przestrzenią, kierunkiem lub czasem- Problem z rozumieniem pojęć takich jak dużo, więcej i najwięcej - Trudność z powiązaniem terminów matematycznych z ich skórami np. Kilogram - kg- Problem z zastosowaniem matematyki w zadaniach z treścią• Problem z szeregowaniem liczb i faktami matematycznymi:- Trudności z szeregowaniem liczb ze względu wartość np czy 13 poprzedza 14, czy następuje po 14 - Problem z liczeniem wstecz np. Co cztery zaczynając od 100- Problem z sekwencjami liczbowymi, np czy 66 to więcej o to o 4 więcej od 71- Trudności z zapamiętaniem tabliczki mnożenia - Problem z obliczeniami pamięciowymi, które są spowodowane kłopotami z pamięcią krótkotrwała• Problem ze złożonym myśleniem:- Uczeń charakteryzuje się sztywnością w myśleniu czyli przejawia trudność w wybraniu właściwej strategii w rozwiązywaniu problemów i w zmianie strategii jeśli ta jest nieskuteczna - Problem z następstwem kolejnych działań matematycznych - Problem z oszacowaniem przybliżonych obliczeń - Trudności z planowaniem np. planowanie jak zadanie rozwiązać jeszcze przed przystąpieniem do obliczeń- Trudność z przechodzeniem z poziomu konkretów do poziomu abstrakcyjnego myślenia • Cechy ogólne charakterystyczne dla osób z dyskalkulią rozwojową:- Odczuwa lęk na samą myśl, że musi zająć się matematyką - Przejawia brak zaufania do własnych kompetencji matematycznych - Często rozwija strategie tzw. wyuczonej bezradności - Wolniej pracuje i popełnia więcej błędów przez co czuje się „gorszy” od innych uczniów w klasie - Oddaje prace niestaranne, pokreślone- Niechętnie pracuje w grupach - Ma niską samoocenęProblemy w nauce matematyki mogą mieć różne podłoże dlatego też dokonanie trafnej diagnozy jest niezwykle ważne i bardzo trudne ale niezwykle ważne dla dalszej edukacji matematycznej ucznia. Dobór testów do badania zależy od psychologa prowadzącego badanie w poradni psychologiczno - pedagogicznej do której udadzą się rodzice wraz z dzieckiem u którego podejrzewają tego typu trudności. Trzeba pamiętać, że ważne jest określenie możliwości ucznia a nie tylko poziomu osiągniętych wiedzy i umiejętności szkolnych w zakresie matematyki. Niepowodzenia w zakresie nauki matematyki mogą być spowodowane różnymi czynnikami. Diagnoza ma za zadanie określić czy problemy z nauce matematyki wynikają z dyskalkulii czy innych przyczyn, takich jak:• Zaległości szkolne które uniemożliwiają zrozumienie i realizacje kolejnych tematów • Problemów z czytaniem ze zrozumieniem • Problemy grafomotoryczne ( popełnianie błędów przy odczytywaniu zapisanych przez siebie działań i w związku z tym niemożność wykonania prawidłowych obliczeń)• Zaburzenia analizy i syntezy wzrokowej ( utrudniają np. naukę geometrii)• Niska odporność na stres• Problemy z koncentracja uwagi• Problem z pamięcią długoterminowąNiektórzy uczniowie mogą przejawiać wyżej wymienione trudności jako współwystępujące z dyskalkulią, ale mogą też występować niezależnie od niej. W tym przypadku uczeń powinien pracować nad poprawą zaburzonych stref i nadrabiać w ten sposób zaległości szkolne. Psycholog podczas badania powinien zebrać dodatkowe informacje o uczniu i jego trudnościach, aby prawidłowo rozpoznać przyczyny problemów szkolnych. Dlatego, tez w poradni psychologicznej podczas diagnozy przeprowadza się badania nie tylko pod kątem dyskalkulii, w o wiele szerszym aspekcie pozwalającym poznać zdolności ucznia pod kątem:• Poziomu rozwoju intelektualnego• Poziomu funkcji percepcyjno - motorycznych • Funkcjonowania emocjonalnego i społecznego • Określenie poziomu opanowania umiejętności szkolnych, czytania, pisania, liczenia • Zebrania informacji od rodziców i nauczycieli ( wywiady, kwestionariusze)• Obserwacji dziecka podczas pracy • Analizy wcześniejszej dokumentacji ( poprzednie badania ucznia, wyniki w nauce, analiza zeszytów ucznia )Efektem wieloetapowej i wnikliwej diagnozy jest opinia wydana przez Poradnie Psychologiczno - Pedagogiczną, opinia składa się z opisu wyników testów przeprowadzonych podczas badania a w szczególności dostosowań wymagań edukacyjnych dla konkretnego ucznia, nauczyciele dzięki temu mogą w odpowiedni sposób pracować z uczniem z dyskalkulią i pomagać mu na poszczególnych etapach edukacji. W opinii również przedstawione są inne formy wsparcia dla ucznia z specyficznymi trudnościami w nauce skierowane do rodziców. Najważniejszy przekaz dla rodzica to „Wspieraj!!!!! Najważniejsze, abyś wspierał swoje dziecko, które przez problemy czuje się zawstydzone.”
kl. 0-1 ( 5-6 lat ) Motoryka: ćwiczenia rozwijające zdolności pisania cyfr i liczb od 1-12 i 25, Liczenie i liczby: liczenie w zakresie do 12 i 25 i powyżej, rozpoznawanie liczb 1-12, liczba 0, oś liczbowa Orientacja przestrzenna: położenie obiektów, pojęcia lewej, prawej strony Pomiary i miary: porównania - pojęcia wysokość, wagi, długość, rozmiar, szacowanie Czas – godziny pełne i połówkowe, proste obliczenia Segregowanie i analiza: porządkowanie obiektów, grupowanie w serie i zbiory, łączenie w pary, trójki, zbiory, przeliczanie. Działania na liczbach: dodawanie w zakresie 1-5 i do-12 - na konkretach i w pamięci, przemienność dodawania, odejmowanie, podwajanie Pieniądze: monety i banknoty, działania na monetach, pierwsze proste obliczenia Czytanie i pisanie liczb: liczby od 0 do 12, czytanie i pisanie cyfr 1 i 2 i kolejne, Figury i kształty: podstawowe figury – podobieństwa, symetria, rozpoznawanie i rysowanie figur, układanie mozaik. Wstęp do algebry: rytmy, powtórzenia, prawidłowości, rozpoznawani i powielanie Szachy - wprowadzenie: figury i zasad poruszania, zadania logiczne. kl. 2-3 ( 7-8 lat ) Liczenie i liczby: liczenie w zakresie do 12, 25, 50 i powyżej setki i tysiące, liczenie przestępne, od-do, w przód wstecz, liczby porządkowe 1-12 do 50 i powyżej, szacowanie ilości, liczebniki Działania na liczbach: dodawanie i odejmowanie w zakresie 1-5 i do-12, mnożenie i dzielenie do 6 i wyżej, relacje między liczbami, w pamięci, własności dodawania, suma i różnica liczb, dodawanie liczb dwucyfrowych, Pomiary i miary: pomiary przedmiotów, jednostki miar porównania i pierwsze przeliczenia, szacowanie, zadania, . Analiza i segregowanie: porównanie zbiorów, zliczanie, analiza zbirów klasyfikacja przedmiotów, powielanie wzorców. Działania pieniężne: monety i banknoty, nominał monet i banknotów, a wartość nabywcza, działania na monetach, obliczenia pieniężne Czytanie i pisanie liczb: pojęcia cyfry i liczby, rozkład liczby na składniki odczytywanie liczb trzycyfrowych i wielocyfrowych zapisanych za pomocą cyfr Figury geometryczne: nazwy i własności, podobieństwa i zależności, proste, półproste, odcinki, kreślenie figur przy linijce, sieć kwadratowa i wykorzystanie, pomiary figur Wstęp do algebry: rytmy, powtórzenia, prawidłowości, rozpoznawani i powielanie, pierwsze wzory Szachy, wprowadzenie: zasady poruszania się figur szachowych po szachownicy, zadania logiczne, pierwsza gra. kl. 3-4 ( 8-9 lat ) Liczby i działania: dodawanie, odejmowanie, mnożenie i dzielenie – pisemne i pamięciowe (tabliczka mnożenia) ćwiczenie biegłości rachunkowej, kwadraty i sześciany liczb, wstęp do potęgowania, zadania z treścią, kolejność wykonywania działań, oś liczbowa Systemy liczbowe: system dziesiątkowy, algorytmy dodawania i odejmowania, jednostki i przeliczenia (monetarne, długości, masy, wagi, czasu), rzymski system liczbowy, obliczenia kalendarzowe Działania pisemne: dodawanie, odejmowanie, mnożenie, dzielenie - zadania z treścią Geometria: figury geometryczne i własności, pomiary długości i kątów, obliczanie obwodów, wielokąty, pojęcie skali – zastosowanie i odczytywanie Ułamki zwykłe: obliczenie ułamka liczby, działania na ułamkach (dodawanie, odejmowanie, mnożenie dzielenie) Ułamki dziesiętne: zapis ułamków dziesiętnych i działania na nich, procenty Pola figur: wzory na pola figur, obliczenia, zadania z treścią, pola wielokątów, Liczby całkowite: działania na liczbach całkowitych, liczby ujemne, Graniastosłupy: prostopadłościany, sześciany, siatki graniastosłupów, pola powierzchni, objętości graniastosłupów, jednostki objętości (litry i mililitry)
W pierwszych klasach podstawówki dzieci zaznajomione są z podstawowymi działaniami arytmetycznymi, których znajomość przyda im się na całe życie. Nauka zaczyna się od omówienia dodawania i odejmowania, następnie uczniowie opanować muszą mnożenie i dzielenie. Są to cztery najbardziej podstawowe działania arytmetyczne, w których występują minimum dwie liczby, czyli elementy działania arytmetycznego. Stopień trudności wzrasta, kiedy do zadań zaczynają być wprowadzane nawiasy, a same obliczenia, zwane wyrażeniami, tworzone są z rozbudowanej liczby elementów. W tym momencie kluczowe jest opanowanie kolejności wykonywania działań. Jaka jest kolejność wykonywania działań na poziomie klasy 4? Prawidłowa kolejność wykonywania działań, której dzieci uczą się na poziomie klasy 4, przedstawia się następująco: działania w nawiasach, mnożenie i dzielenie – z zachowaniem kolejności od lewej do prawej, dodawanie i odejmowanie – z zachowaniem kolejności od lewej do prawej. Przykład: 5 + 19 – (13+2) = 9, ponieważ zaczyna się od działania w nawiasie, gdzie 13 plus 2 daje 15. Następnie przeprowadzamy dodawanie 5 plus 19, które daje 24. Od 24 odejmujemy liczbę 15, którą uzyskaliśmy jako wynik w nawiasie, czyli 24 odjąć 15 daje 9. Najpierw mnożenie czy dzielenie? Pamiętaj o kolejności wykonywania działań Kolejność wykonywania działań w przypadku wyrażenia z kilkoma elementami może sprawiać trudność. Pamiętać należy, że zawsze pierwszym krokiem jest wykonanie działania w nawiasie. Potem przejść należy do mnożenia i dzielenia. Te działania są sobie równe, dlatego wykonujemy je od pierwszego wyrażenia od strony lewej, idąc do prawej. Przykład: 6 x 7 x 10 : 3 = 140, ponieważ jako pierwsze mnoży się 6 razy 7, a uzyskany wynik to 42. 42 pomnożone jest razy 10, uzyskany wynik daje 420. Ta liczba, czyli 420, na koniec podzielona zostaje przez 3, dając 140. Kolejność wykonywania działań. Co najpierw dodawanie czy odejmowanie? Podobna wątpliwość, jak przy kolejności mnożenia i dzielenia, ma miejsce również przy kolejności dodawania i odejmowania. W tym przypadku również te działania są sobie równe, dlatego wykonujemy je po kolei od strony lewej do prawej. Przykład: 19 – 7 + 13 + 6 = 31, ponieważ zacząć należy od działania 19 odjąć 7, co daje 12. Do 12 dodajemy 13, co daje sumę 25. W ostatnim działaniu do 25 dodajemy 6, a suma wynosi 31. Dalsza część artykułu pod materiałem wideo Jak poprawnie obliczyć działanie? W zrozumieniu i zapamiętaniu tego, jak poprawnie obliczyć działanie przydatny jest opisowy przykład, uwydatniający istotność zachowania odpowiedniej kolejności. Wyobraźmy sobie sytuację, kiedy od poniedziałku do piątku dziecko dostaje od babci 3 kredki za odrobienie lekcji każdego dnia. W sobotę w nagrodę za cały tydzień sumiennej pracy babcia daje mu dodatkowo 5 kredek. W sobotę dziecko będzie miało 20 kredek. W działaniu wygląda to następująco: 3 x 5 + 5 = 15 + 5 = 20 W sytuacji jednak kiedy babcia dałaby dziecku w niedzielę 5 kredek na zachętę przed tygodniem szkoły, a następnie każdego dnia dostawałoby 3 kredki, to działanie zapisać można następująco: 5 + 3 x 5 = ?? Kluczowe jest tutaj zastosowanie kolejności wykonywania działań. Wynik to oczywiście również 20 kredek, ponieważ najpierw mnożymy, a potem dodajemy. Jednak, jeśli ktoś wykonałby to działanie z pominięciem odpowiedniej kolejności, zaczynając od lewej do prawej strony, czyli od dodawania, to otrzyma błędny wynik wynoszący 40. Kolejność wykonywania działań w starszych klasach podstawówki Podkreślić należy, że omówiona kolejność wykonywania działań odnosi się do poziomu klasy 4. W kolejnych klasach podstawówki uczniowie poznają potęgowanie i pierwiastkowanie. Generalna kolejność wykonywania działań, którą poznają starsze dzieci, to: działania w nawiasach, potęgowanie i pierwiastkowanie, mnożenie i dzielenie, dodawanie i odejmowanie.
problemy z matematyką w klasie 4